EE 330 Lecture 15

Devices in Semiconductor Processes

- Diodes
- Analysis of Nonlinear Circuits

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27 Exam 2 Friday October 25 Exam 3 Friday Nov 22 Final Exam Monday Dec 16 12:00 - 2:00 PM

Review from last lecture

pn Junctions

Review from last lecture

pn Junctions

- This is a piecewise model
- pn junction serves as a "rectifier" passing current in one direction and blocking it in the other direction

Analysis based upon "passing current" in one direction and " blocking current" in the other direction

I-V characteristics of pn junction

(signal or rectifier diode)

Improved Diode Model:

Diode Equation

$$
\mathbf{I}_D = \mathbf{I}_S \left(e^{\frac{V_d}{nV_t}} - 1 \right)
$$

I_s and n are model parameters

What is V_t at room temp?

V $_{\rm t}$ is about 26mV at room temp

 l_S in the 10fA to 100fA range

 I_S proportional to junction area

$$
V_t = \frac{kT}{q}
$$

k= 1.380 64852 × 10−23JK-1

q = −1.60217662×10−19 C

k/q=8.62× 10−5 VK-1

n typically about 1

Diode equation due to William Shockley, inventor of BJT

In 1919, [William Henry Eccles](http://en.wikipedia.org/wiki/William_Henry_Eccles) coined the term *diode*

In 1940, Russell Ohl "stumbled upon" the p-n junction diode

I-V characteristics of pn junction

(signal or rectifier diode)

Improved Diode Model:

Diode Equation

\n
$$
I_{D} = I_{S} \left(e^{\frac{V_{d}}{nV_{t}}} - 1 \right)
$$
\nSubstituting the equation:

\n
$$
V_{t} = \frac{k}{d}
$$
\nSubstituting the equation:

\n
$$
I_{D} = I_{S} \left(e^{\frac{V_{d}}{nV_{t}}} - 1 \right)
$$
\nSubstituting the equation:

\n
$$
V_{t} = \frac{k}{d}
$$

Simplification of Diode Equation:

Under reverse bias (V_d<0), \quad \vert _D \cong $- \vert$ _S Under forward bias (V_d>0), $I_{D} = I_{S} e^{nv_{t}}$ d t $V_{\rm d}$ n V_{\star} and the set of \sim

 $I_{\rm S}$ in 10fA -100fA range (for signal diodes)

n typically about 1

$$
V_t = \frac{kT}{q}
$$

k/q=8.62× 10⁻⁵ VK⁻¹

V $_{\rm t}$ is about 26mV at room temp

Simplification essentially identical model except for V_d very close to 0

Diode Equation or forward bias simplification are unwieldy to work with analytically

pn Junctions

 $\{J_{\mathsf{s}}\}$ is model parameter (or I_{s} is a model parameter if A is fixed) {A} is design parameter , A is the cross-sectional area of the junction (usually from top view in layout)

Slight discontinuity at V=0 in these models (which doesn't exist in real diodes) but of no consequence unless V is very close to 0

 I_S is often given in data sheets and model files

These are termed "piecewise" models

Little difference in these models, if any, in most applications. Typically, any referred to as the Diode Equation

pn Junctions

I

Anode

Cathode

V

l I ┤ \int $V < 0$ $=\langle$ J $_{\rm S}$ Ae *** \qquad V $>$ **0 V 0** $\mathbf{I} = \frac{1}{2} \mathbf{J}_\mathbf{S} \mathbf{A} \mathbf{e}^{\mathbf{n} \mathbf{V}_\mathsf{T}}$ $\mathbf{V} > \mathbf{0}$ Diode Equation: $I = \{J_s$ J_s (or I_s) is strongly temperature dependent G0 and the contract of the con $J_s = J_{sx} T^m e^{V_t}$ $-V_{\rm{ex}}$ With $n=1$, for $V>0$, ${J_{SX}}$, m,n} are model parameters forward bias (further simplification) $\begin{vmatrix} 0 & \cdots & \cdots & 0 \end{vmatrix}$ reverse bias $I_{\rm S} = J_{\rm S}A$

V

{A} is a design parameter $\{T, V_{GO}, k/q\}$ are environmental parameters and physical constants

Diode Equation:

\n
$$
I(T) = \begin{cases} \n\left(J_{sx} \left[T^m e^{\frac{-V_{\text{ex}}}{V_t}} \right] \right) A e^{\frac{V}{V_t}} & V > 0 \\ \n0 & V < 0 \n\end{cases}
$$
\nTypical values for key parameters:

\n
$$
J_{sx} = 0.5 A / \mu^2, V_{\text{G0}} = 1.17 V, m = 2.3
$$

Observe this simplification is a piecewise model !

Diode Equation (even simplification) unwieldly to work with analytically. Why?

World's simplest diode circuit

Determine V_{OUT}

Assume forward bias , simplified diode equation model

$$
V_{OUT} = I_D \cdot 1K
$$

\n
$$
V_{OUT} = I_S e^{\frac{V_D}{nV_t}}
$$

\n3 independent
\nunknowns
\n
$$
V_{OUT} = I_S e^{\frac{5-V_{OUT}}{nV_t}} \cdot 1K
$$

\n
$$
V_{OUT} = ?
$$

- Can obtain V_{OUT} from this equation but explicit expression does not exist for V_{OUT} !
- Previous analysis based upon "passing" and "blocking" currents was not rigorous !!

1K $\mathsf{V}_{\mathsf{OUT}}$ D_1 $V_{IN} = 5V$ $\mathsf{V}_{\mathsf{IN}}($ l_D $^{+}$ V_D $^{-}$

I-V characteristics of pn junction

(signal or rectifier diode)

Diode Equation

$$
I_D = I_S \left(e^{\frac{V_d}{nV_t}} - 1 \right)
$$

 $\left| {\bf B} \right|_{{\rm D}}= \left| {\bf B} \right|\left| {\bf e}^{\mathsf{n} {\sf V}_{\rm t}}-1 \right|$ is proportional to junction area $\left(\begin{array}{cc} V_d & V_d \ \hline N^2 \end{array}\right)$ I_s often in the 10fA to 100fA range

 $\begin{pmatrix} & & \ & & \end{pmatrix}$. The v_t is about 26mV at room temp

Simplification of Diode Equation:

$$
I_D = \begin{cases} I_s e^{\frac{V_D}{nV_T}} & V > 0 \\ -I_s & V < 0 \end{cases}
$$

How much error is introduced using the simplification for $V_d > 0.5V$? (assume n=1)

$$
\varepsilon = \frac{I_s \left(e^{\frac{V_d}{V_t}} - 1\right) - I_s e^{\frac{V_d}{V_t}}}{I_s \left(e^{\frac{V_d}{V_t}} - 1\right)} \qquad \varepsilon < \frac{1}{e^{\frac{0.5}{0.26}}} = 4.4 \bullet 10^{-9}
$$

How much error is introduced using the simplification for $\rm V_d$ < - 0.5V? $\begin{array}{c} \mathbf{S}[\mathbf{S}^{[e^- - 1]}$ & e^{.026} \ \end{array}$
ow much error is introduced using the simplification for V_d < - 0.5
 $\mathcal{E}< e^{\frac{-0.5}{.026}} = 4.4 \bullet 10^{-9}$
Simplification almost never introduces any significant error

$$
\varepsilon < e^{\frac{-0.5}{.026}} = 4.4 \bullet 10^{-9}
$$

Will you impress your colleagues or your boss if you use the more exact diode equation when $V_d < -0.5V$ or $V_d > +0.5V$?

Will your colleagues or your boss be unimpressed if you use the more exact diode equation when $V_d < -0.5V$ or $V_d > +0.5V$?

 J_S = Sat Current Density (in the 1aA/u² to 1fA/u² range) A= Junction Cross Section Area V_T =kT/q (k/q=1.381x10⁻²³V•C/°K/1.6x10⁻¹⁹C=8.62x10⁻⁵V/°K) n is approximately 1

I_s highly temperature dependent I_D

Example: Consider diode operating under forward bias

$$
I_{D}(T) = \left(J_{sx} \left[T^{m} e^{\frac{-V_{cs}}{V_{t}}} \right] \right) A e^{\frac{V_{b}}{V_{t}}} \qquad V_{D} \searrow
$$

What percent change in I_s will occur for a 1°C change in temperature at room temperature?

$$
\frac{\Delta I_s}{I_s} = \frac{\left(J_{sx} \left[T_{T_z}^m e^{\frac{-V_{ss}}{V_{\cdot}(T_z)}} \right] \right) A - \left(J_{sx} \left[T_{T_z}^m e^{\frac{-V_{ss}}{V_{\cdot}(T_z)}} \right] \right) A}{\left(J_{sx} \left[T_{T_z}^m e^{\frac{-V_{ss}}{V_{\cdot}(T_z)}} \right] \right) A} = \frac{\left(\left[T_{T_z}^m e^{\frac{-V_{ss}}{V_{\cdot}(T_z)}} \right] \right) - \left(\left[T_{T_z}^m e^{\frac{-V_{ss}}{V_{\cdot}(T_z)}} \right] \right)}{\left(\left[T_{T_z}^m e^{\frac{-V_{ss}}{V_{\cdot}(T_z)}} \right] \right)}
$$

$$
\frac{\Delta I_s}{I_s} = \frac{\left(1.240x10^{-15} \right) - \left(1.025x10^{-15} \right)}{\left(1.025x10^{-15} \right)} 100\% = 21\%
$$

- Attempts to measure I_s in our laboratories can result in large errors !
- Most circuits whose performance depends upon precise value for I_S are not practical

pn Junctions

What basic circuit analysis principles were used to analyze this circuit?

Analysis based upon "passing current" in one direction and " blocking current" in the other direction

Rectifier Application:

Analysis based upon "passing current" in one direction and " blocking current" in the other direction

Was the previous analysis rigorous? Is use of simple diode model justifiable?

Consider again the basic rectifier circuit

- Previously considered sinusoidal excitation
- Previously gave "qualitative" analysis
- **Rigorous analysis method is essential**

 $V_{\text{out}} = ?$

Consider again the basic rectifier circuit

This analysis is rigorous (using only KVL and device models)

Even the simplest diode circuit does not have a closed-form explicit solution when diode equation is used to model the diode !!

Due to the nonlinear nature of the diode equation

Simplifications of diode model are essential if analytical results are to be obtained !

$$
\mathbf{I}_{d} = \mathbf{I}_{S} \left(e^{\frac{V_{d}}{V_{t}}} - 1 \right)
$$

Power Dissipation Becomes Destructive if Vd > 0.85V (actually less)

$$
\mathbf{I}_{d} = \mathbf{I}_{S} \left(e^{\frac{V_{d}}{V_{t}}} - 1 \right)
$$

This is the most useful conducting current range for many applications

$$
I_d = I_S \left(e^{\frac{V_d}{V_t}} - 1 \right)
$$

For two decades of current change, Vd is close to 0.6V

This is the most useful current range when conducting for many applications

Which simplified model is better?

Both are about the same !

 $d_{d} = 0$ $V_{d} < 0.6$ V $d_{d} =$ $V_{d} = 0.6 V I_{d} > 0$

d t $V_{\rm d}$ \qquad $\$ $I_d = I_S | e^{V_t} - 1 |$ $\left(\begin{array}{c} V_d \\ \frac{V_d}{\sqrt{2\pi}} \end{array}\right)$ $=$ $\vert e \vert e^{V_t} - 1 \vert$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $V_{\rm d}$ = 0 $V_{\rm d}$ < 0.7 V

Widely Used **Piecewise Linear** Model

$$
\mathbf{I}_d = \mathbf{I}_S \left(e^{\frac{V_d}{V_t}} - 1 \right)
$$

Better model in "ON" state though often not needed Includes Diode "ON" resistance

$$
\mathbf{I}_d = \mathbf{I}_S \left(e^{\frac{V_d}{V_t}} - 1 \right)
$$

Piecewise Linear Model with Diode Resistance

 $I_d = 0$ if $V_d < 0.6V$ $V_{d} = 0.6 V + I_{d}R_{D}$ if $I_{d} > 0$

(R_D is rather small: often in the 20Ώ to 100Ώ range):

Diode Models

Diode Equation (4 variants)

Which model should be used?

The simplest model that will give acceptable results in the analysis of a circuit

Diode Model Summary

Diode Equation (or variants discussed)

$$
I_d = I_S \left(e^{\frac{V_d}{V_t}} - 1 \right)
$$

Diode Model Summary

Piecewise Linear Models

Diode Equation (or variants discussed)

d N t 1 I $V_{\rm d}$ and $V_{\rm d}$ are $V_{\rm d}$ are $V_{\rm d}$ and $V_{\rm d}$ are $I_d = I_s \left(e^{\frac{V_d}{V_t}} - 1 \right)$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

When is the ideal model adequate?

When is the second piecewise-linear model adequate? When it doesn't make much difference whether V_d =0V or V_d =0.6V When it doesn't make much difference whether V_d =0.6V or V_d =0.7V

If the diode equation model is used will obtain:

$$
12 = I_{OUT} \cdot 10K + V_{D}
$$
\n
$$
I_{OUT} = I_{S} \left(e^{\frac{V_{D}}{V_{t}}} - 1 \right)
$$
\n
$$
I_{OUT} = I_{S} \left(e^{\frac{-I_{OUT} \cdot 10K}{V_{t}}} e^{\frac{12}{V_{t}}} - 1 \right)
$$

As in previous example, a closed-form explicit expression for I_{OUT} does not exist Will now establish rigorous approach for solving this (and other) nonlinear circuit (with model uncertainty and piecewise models) with piecewise models and obtaining a practical solution !

Devices in Semiconductor Processes

- Resistors
- Diodes
- Capacitors
- MOSFETs

Side Track! Analysis of Nonlinear Circuits

- How are piecewise models accommodated?
- Will address the issue of how to rigorously analyze nonlinear circuits with piecewise models later

Example: Determine I_{OUT} for the following circuit

$$
\mathbf{I}_{\text{OUT}} = \mathbf{I}_{\text{S}} \left(e^{\frac{-\mathbf{I}_{\text{OUT}} \cdot \mathbf{10K}}{V_t}} e^{\frac{12}{V_t}} - 1 \right)
$$

- Results are accurate
- Analysis was tedious (and if slightly more complicated circuit even single implicit expression for output is often not attainable)
- Difficult to interpret results with implicit solution

Alternate Solution Strategy:

- 1. Assume PWL model with $V_D=0.6V$, $R_D=0$
- 2. Guess state of diode (ON)
- 3. Analyze circuit with model
- 4. Validate state of guess in step 2 (verify the "if" condition in model)
- 5. Assume PWL with $V_{\text{D}}=0.7V$
- 6. Guess state of diode (ON)
- 7. Analyze circuit with model
- 8. Validate state of guess in step 6 (verify the "if" condition in model)
- 9. Show difference between results using these two models is small
- 10. If difference is not small, must use a different model

Select Model

Validate Model

Alternate Solution:

- 1. Assume PWL model with $V_D=0.6V$, $R_D=0$, IS=10FA
- 2. Guess state of diode (ON)

3. Analyze circuit with model

$$
I_{\text{OUT}} = \frac{12V - 0.6V}{10K} = 1.14mA
$$

4. Validate state of guess in step 2

To validate state, must show $I_D>0$

$$
I_D = I_{OUT} = 1.14 \text{mA} > 0
$$

Alternate Solution:

- 5. Assume PWL model with $V_D=0.7V$, $R_D=0$, IS=10FA
- 6. Guess state of diode (ON)

$$
I_{\text{OUT}} = \frac{12V - 0.7V}{10K} = 1.13mA
$$

8. Validate state of guess in step 6

To validate state, must show $I_D>0$

$$
I_D = I_{OUT} = 1.13 \text{mA} > 0
$$

Alternate Solution:

9. Show difference between results using these two models is small

$$
I_{\text{OUT}} = 1.14 \text{mA}
$$
 and $I_{\text{OUT}} = 1.13 \text{ mA}$ are close

Thus, can conclude

$$
I_{\text{out}} \cong 1.14 \text{mA}
$$

Example: $Determine I_{OUT}$ for the following circuit

How do the two solutions compare?

With diode equation model for IS=10fA :

$$
I_{\text{OUT}} = I_s \left(e^{\frac{-I_{\text{OUT}} \bullet 10K}{V_t}} e^{\frac{12}{V_t}} - 1 \right) \longrightarrow I_{\text{OUT}} = 1.134 \text{mA}
$$

With PWL model:

$$
I_{\text{OUT}} \cong 1.14 \text{mA}
$$

What was the major reason the PWL model simplified the analysis?

Piecewise Linear Model

Strategy:

- 1. Assume PWL model with $V_D=0.6V$, $R_D=0$
- 2. Guess state of diode (ON)
- 3. Analyze circuit with model
- 4. Validate state of guess in step 2
- 5. Assume PWL with $V_D=0.7V$
- 6. Guess state of diode (ON)
- 7. Analyze circuit with model
- 8. Validate state of guess in step 6
- 9. Show difference between results using these two models is small
- 10. If difference is not small, must use a different model

- 1. Assume PWL model with $V_D=0.6V$, $R_D=0$
- 2. Guess state of diode (ON)

3. Analyze circuit with model

$$
I_{\text{OUT}} = \frac{0.8 - 0.6 \text{V}}{10 \text{K}} = 20 \mu A
$$

4. Validate state of guess in step 2

To validate state, must show $I_D>0$

$$
I_D = I_{OUT} = 20 \mu A > 0
$$

- 5. Assume PWL model with $V_D=0.7V$, $R_D=0$
- 6. Guess state of diode (ON)

7. Analyze circuit with model

$$
I_{\text{OUT}} = \frac{0.8V - 0.7V}{10K} = 10 \,\mu\text{A}
$$

8. Validate state of guess in step 6

To validate state, must show $I_D>0$

$$
I_D = I_{OUT} = 10 \mu A > 0
$$

- 9. Show difference between results using these two models is small $\mathsf{I}_{\mathsf{OUT}}$ =10 μ A and $\mathsf{I}_{\mathsf{OUT}}$ =20 μ A . are not close
- 10. If difference is not small, must use a different model

Thus must use diode equation to model the device

Solve simultaneously, assume V_t =25mV, I_s =1fA

Solving these two equations by iteration, obtain V_D = 0.6148V and I_{OUT} =18.60µA

Use of Piecewise Models for Nonlinear Devices when Analyzing Electronic Circuits

Process:

- 1. Guess state of the device
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify model (if necessary)

Observations:

- o Analysis generally simplified dramatically (particularly if piecewise model is linear)
- o Approach applicable to wide variety of nonlinear devices
- \circ Usually much faster than solving the nonlinear circuit directly
- o Wrong guesses in the state of the device do not compromise solution (verification will fail)
- Helps to guess right the first time
- o Detailed model is often not necessary with most nonlinear devices
- o Particularly useful if piecewise model is PWL (but not necessary)
- o Closed-form solutions (attainable with PWL models) give insight into performance of circuit
- For practical circuits, the simplified approach with piecewise models usually applies

Key Concept For Analyzing Circuits with Nonlinear Devices

Stay Safe and Stay Healthy !

End of Lecture 15